

Reg.	No.	:	

Name :

III Semester M.Sc. Degree (CBSS - Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) **MATHEMATICS**

MAT 3 E01: Graph Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 1. Explain the personal assignment problem.
- 2. Prove that $\alpha+\beta=\nu$.
- 3. If $\delta > 0$, then prove that $\alpha' + \beta' = v$.
- 4. Show that the Petersen graph is 4-edge-chromatic.
- 5. Show that K_5 e is planar for any edge e of K_5 .
- 6. Let u and v be two distinct vertices of the graph G. Then prove that a set S of vertices of G is u-v separating if and only if every u-v path has at least one internal vertex belonging to S.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question $(4 \times 16 = 64)$ carries 16 marks.

UNIT-I

- 7. a) Prove that if a simple graph G contains no K_{m+1}, then G is degree majorised by some complete m-partite graph H. Also prove that, if G has the same degree sequence as H, then $G \approx H$.
 - b) Show that a connected α -critical graph has no cut vertices.

K22P 1412

- 8. a) For any graph G, prove that $\chi \leq \Delta + 1$.
 - a) For any graph G, prove as b) If G is a connected simple graph and is neither an odd cycle $nor_{a comp_{p_0}}$
- 9. a) If G is simple, then prove that $\pi_k(G) = \pi_k(G e) \pi_k(G.e)$ for any edge e^{-g}
 - b) State and prove Dirac theorem on k-critical graphs.

UNIT - II

- 10. If G is simple, then prove that either $\chi' = \Delta$ or $\chi' = \Delta + 1$.
- 11. a) Prove that, inner (outer) bridges avoid one another.
 - b) Prove that an inner bridge that avoids every outer bridge is transferable
- 12. Prove that the following three statements are equivalent:
 - a) every planar graph is 4-vertex-colourable;
 - b) every plane graph is 4-face-colourable;
 - c) every simple 2-edge-connected 3-regular planar graph is 3-edge-coloura

UNIT - III

- 13. State and prove Menger's theorem.
- 14. a) Let G be a bipartite graph with bipartition (X, Y). Then prove that G contain a matching that saturates every vertex in X if and only if $|N(S)| \ge |S|$ for all S
 - b) If G is a k-regular bipartite graph with k > 0, then G has a perfect matching
- 15. a) Prove that every 3-regular graph without out edges has a perfect matchin
 - b) Let I be a feasible vertex labelling of G. If G contains a perfect matching M then prove that M* is an optimal matching of G.